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Abstract
The static and high-frequency differential conductivity of a one-dimensional
superlattice with parabolic miniband, in which the dispersion law is assumed
to be parabolic up to the Brillouin zone edge, is investigated theoretically.
Unlike the earlier published works, devoted to this problem, the novel formula
for the static current density contains temperature dependence, which leads to
the current maximum shift to the low field side with increasing temperature.
The high-frequency differential conductivity response properties including the
temperature dependence are examined and opportunities of creating a terahertz
oscillator on Bloch electron oscillations in such superlattices are discussed.
Analysis shows that superlattices with parabolic miniband dispersion law may
be used for the generation and amplification of terahertz fields only at very low
temperatures (T → 0).

PACS numbers: 72.10.Bg, 73.21.Cd

1. Introduction

An idea of a THz Bloch oscillator based on semiconductor superlattices (SLs) is discussed
intensely (see [1–5] and references therein). The idea is based on the following arguments.
If a high enough dc electric field E is applied along the SL axis, then an electron traveling
from one Brillouin zone edge to another (within one energy band) almost without scattering
executes Bloch oscillations (BO) with frequency � = eEd/h̄ (d is the SL spatial period). At
E = 3 kV cm−1 and d = 2 × 10−7 cm we have � = 1 THz, and the frequency may be tuned
continuously by an applied electric field. However, the existence of the BO is not sufficient
to generate radiation. The negative differential conductivity (NDC) near the Bloch frequency
is needed. Studying NDC is a traditional problem in investigations on transport in SL (see
[6], for example), which were began in the pioneer work by Esaki and Tsu [7]. One of the
conditions of THz field generation and amplification at the Bloch frequency harmonics is the
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existence of high-frequency NDC in the current–voltage curve with positive static differential
conductivity. It was shown [4, 8] that this condition can be realized in the case of extremely
low temperatures, in particular, for a SL with ‘parabolic miniband’. We mean a dispersion law
in the form of a truncated parabola (i.e., the dispersion law is assumed to be parabolic up to the
Brillouin zone edge). Note that already in [7, 9] a dispersion law constructed from direct and
overturned parabolas was considered (together with the cosine dispersion law). The parabolic
dispersion law in question is a special case of that model. Such models were studied [7] in
reference to specific superlattices by discussing the preparation methods. Our aim is to find
the temperature dependence of NDC, to analyze the temperature effect on the ‘mean’ electron
BO and to discuss in what extent the idea mentioned [4, 8] is realistic at finite temperatures.

2. Static distribution function and current–voltage characteristic

The electron energy in the lowest parabolic miniband of the SL is

E(p) = p⊥
2m⊥

+ ε(p), (1)

where p⊥ is quasimomentum, m⊥ is electron effective mass in the SL layer plane,

ε(p) = �d2

π2h̄2 · p2

2
, −πh̄

d
� p � πh̄

d
, (2)

p is electron quasimomentum along the SL axis and � is the doubled miniband width. The
longitudinal energy ε(p) may be written as the Fourier series (as a set of partial cosine
minibands)

ε(p) = 1

2

∞∑
k=1

�k

(
1 − cos

(
kpd

h̄

))
, (3)

where �k = (−1)k+1(4�)/(π4k2) is the width of the partial cosine miniband.
In the quasi-classical situation (� � eEd, h̄/τ , where τ is the electron momentum

relaxation time and e is the electron charge), the current density in electric field Etot(t)

may be found by solving the Boltzmann equation with the collision integral within the
τ -approximation:

∂F (p, t)

∂t
+

(
eEtot(t),

∂F (p, t)

∂p

)
= F0(p) − F(p, t)

τ
, (4)

where F0(p) is the equilibrium electron distribution function and F(p, t) ≡ F(p⊥, p, t) is the
unknown distribution function perturbed due to the electric field. Below we use dimensionless
variables by changing p · d/(π · h̄) → p, Etotedτ/(π · h̄) → Etot, T /� → T , t/τ → t (T is
the temperature in energy units).

Below we consider the case when the Etot(t) field is directed along the SL lattice. As
shown [9], the dependence of F(p, t) on p⊥ is the same as that of F0(p). This is because
such a model collision integral does not mix the electron degrees of freedom which, therefore,
become mutually independent. Equation (4) integrated over p⊥ takes the form

∂f (p, t)

∂t
+ Etot(t)

∂f (p, t)

∂p
= f0(p) − f (p, t) (−1 � p � 1). (5)

where f (p, t) is the distribution function of longitudinal quasimomenta that satisfies the
periodicity condition f (1, t) = f (−1, t). Below that function (as well as f0(p)) is normalized
to the carrier density n.
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In a static field Etot(t) = E = const, and denoting f (p) = fc(p,E, T ), we get

E
dfc

dp
= f0 − fc (−1 � p � 1). (6)

We consider the non-degenerate electron gas, so that

f0(p, T ) = 2n

[√
2πT erf

(
1√
2T

)]−1

exp

(
− p2

2T

)
(7)

where erf(z) is the error function. In the low temperature limit (T → 0) the relation (7)
reduces to the function used in [8]: g0(p) = 2nδ(p).

The exact solution of equation (6) with periodicity condition, fc(−1) = fc(1), takes the
form [10]

fc(p,E, T ) = n

Eerf(1/
√

2T )
exp

(
T

2E2
− p

E

) {
erf

(
p√
2T

−
√

T√
2E

)

−
[

exp

(
2

E

)
− 1

]−1

erf

( √
T√

2E
− 1√

2T

)

+

[
1 − exp

(
− 2

E

)]−1

erf

( √
T√

2E
+

1√
2T

)}
(−1 � p � 1). (8)

In the limiting case E → 0 (8) reduces to (7). In another limiting case, T → 0, we get
the distribution function found in [8]:

g(p,E) = 2n

E
exp

(
− p

E

){
[1 − exp(−2/E)]−1, 0 < p � 1,

[ exp(2/E) − 1]−1, −1 � p < 0.
(9)

The function (8) satisfies the same normalization condition as the equilibrium function f0

1

2

∫ 1

−1
fc(p,E, T )dp = n (10)

and, therefore, it makes the integral on right-hand side of formula (6) vanish. Besides, the
integral on left-hand side of the Boltzmann equation (6) vanishes too, because of the periodicity
condition mentioned. The distribution function fc(p,E, T ) at several values of E and T is
shown in figure 1.

The current density j in the direction of the SL axis can be found (in dimensional units)
by a conventional way

j = ed

2πh̄m

∫ πh̄/d

−πh̄/d

pfc(p) dp. (11)

By substituting function (8) into (11) we get

j (E, T ) = E +

[
2erf

(
1√
2T

)
sinh

(
1

E

)]−1

exp

(
T

2E2

)

×
[

erf

( √
T

E
√

2
− 1√

2T

)
− erf

( √
T

E
√

2
+

1√
2T

)]
. (12)

Here j is expressed in units of j0 = ne�d/πh̄, while all the quantities are written in
dimensionless form.

Equation (12) determines the current–voltage characteristic for the parabolic miniband
SL by taking into account the current-density temperature dependence.
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Figure 1. Distribution function fc(p) at various values of the driving field and temperature:
(1) E = 1, T = 0.1; (2) E = 0.1, T = 0.1; (3) E = 2, T = 2; (4) E = 1, T = 0.005. The dashed
curve 5 represents function g(p) at E = 1.

To warrant numerical stability we present formula (12) in the following form:

j (E, T ) = Eσ(E, T ), σ (E, T ) = 1 −
√

2

πT

exp(−0.5/T ) + A(E, T )

erf(1/
√

2T )
, (13)

where σ(E, T ) is the conductivity and

A(E, T ) = E2

T sinh(1/E)

∫ 1/E

0
exp

(
− s2E2

2T

)
s sinh s ds. (14)

The value of A(E, T ) can be estimated numerically with high accuracy.
Expanding the exponent in a power series we get

A(E, T ) = 1

T

∞∑
n=0

(−1)n

(2n)!!

Gn(E)

T n
, (15)

where functions Gn(E) are defined by the recurrent formula

G0 = E coth

(
1

E

)
− E2, Gn = G0 + 2nE2[(2n + 1)Gn−1 − 1]. (16)

As Gn(E) ∈ [0, 1/(2n + 3)), series (15) converges quickly. As numerical experiments
show, the first four terms of series (15) give a good approximation at T > 0.5.

At |E| → 0 we have A(E, T ) → 0, so in low fields (|E| � 1) in the linear approximation
on E we have

j (E, T ) = E

(
1 −

√
2

πT

exp(−0.5/T )

erf(1/
√

2T )

)
= E

〈
p2

T

〉
0

, (17)

where angle brackets mean averaging over the equilibrium distribution. Note that
the conductivity temperature dependence in low fields (the expression within round
brackets in (17)) is close to the analogous dependence for the miniband cosine model
(I1(1/2T )/I0(1/2T ), In(z) being the modified Bessel function).
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Figure 2. Current–voltage characteristic at different values of temperature: (1) T = 0;
(2) T = 0.01; (3) T = 0.1; (4) T = 0.5; (5) T = 1.

In high fields (|E| > 1) we have

σ(E, T ) ≈
√

2/π

E2T
√

T erf(1/
√

2T )

∞∑
n=0

(−1)n+1

(2n)!!

Dn

T n
, Dn =

n+2∑
k=2

22k(2n + 1)!B2k

(2k)!(2n − 2k + 5)!
,

(18)

where Bm are Bernoulli numbers.
For low temperatures (T � 1), using (14), we get

σ(E, T ) ≈ 1 − 1

erf(1/
√

2T )

[
1

E sinh(1/E)
exp

(
T

2E2

)
+

√
2

πT
exp

(
− 1

2T

)]
. (19)

As numerical experiments show, formula (19) gives good approximation at T < 0.07. In
limiting case T → 0 from (19) we get the expression that was found in [8].

j = j (E) = E − 1

sinh(1/E)
. (20)

From equations (17), (18) it follows that j ∼ E at |E| � 1 and j ∼ 1/E at |E| � 1.
Therefore, at fixed temperature T = f ix the function j (E, T ) reaches its maximum at some
value E = EC(T ) > 0 and the negative differential conductivity is realized at E > EC(T )

(see figure 2).
Note that EC(T ) decreases with increasing temperature. Essentially, that EC value does

not depend on the temperature at all in the cosine model: EC = 1/π ≈ 0.318.
The parametric representation of dependence EC(T ) is defined by equation σd = 0, where

σd = ∂j/∂E is the differential conductivity. Using equations (13) and (14), we get

σd(E, T ) = 1 +
1

E2

{ [
E coth

(
1

E

)
− T

]
[σ(E, T ) − 1]

−
√

2T

π

1

erf(1/
√

2T )
exp

(
− 1

2T

) }
, (21)
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Figure 3. The dependence E = EC(T ). The dashed curve EC = 1/π represents EC for the
cosine model.

Thus function EC(T ) is defined by implicitly by the equation

E2

√
πT

2
erf

(
1√
2T

)
+ T A(E, T ) = E coth

(
1

E

) [
A(E, T ) + exp

(
− 1

2T

)]
(22)

and it is sufficient to solve this equation at E > 0.
The numerical solution of equation (22) at E versus T is presented in figure 3.
Note that the dependence E = EC(T ) is monotone, so the inverse function TC = TC(E)

exists. To investigate the behavior of the function TC(E), first consider the case of high
temperatures T � 1. Expanding all functions in a power series on 1/T and neglecting all
terms o(1/T 2), we get

TC ≈ (45E4 + 22.5E2 + 1.8) tanh2(1/E) − (36E + 3E) tanh(1/E) − 9E2 − 1.5

(9E2 + 4) tanh2(1/E) − 6E tanh(1/E) − 3
(23)

By that

lim
E→E1+0

TC(E) = +∞, (24)

where E1 ≈ 0.291 049 55 is the root of equation

(9E2 + 4) tanh2

(
1

E

)
− 6E tanh

(
1

E

)
− 3 = 0. (25)

Consider now the case of low temperatures T � 1. Using (19), we get

TC(E) ≈ 2E2

[
E2 tanh

(
1

E

)
sinh

(
1

E

)
− 1

] [
1 − 2E tanh

(
1

E

)]−1

. (26)

By that

lim
E→E2−0

TC(E) = 0, (27)

6
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where E2 ≈ 0.373 681 745 is the root of equation

E2 tanh

(
1

E

)
sinh

(
1

E

)
= 1. (28)

Therefore, the function EC(T ) is defined for T > 0 and

lim
T →0

EC(T ) = E2, lim
T →+∞

EC(T ) = E1. (29)

Let us show that the existence of the static NDC is related to the electron Bloch oscillations.
The electron quasimomentum in the dc electric field is p(t) = eEt + p0(p0 = p(0)), while
the BO velocity (∂ε/∂p) is

V (t) = 2d

h̄

∞∑
k=1

k�k sin(k�t + kp0). (30)

The V (t) function takes the form of an asymmetric Bloch saw with sloping rise and
vertical drop. It is an infinite negative inverse effective mass (∂2ε/∂p2) that corresponds to
the vertical drops (i.e., Bragg reflections). In the rest of the Brillouin zone the effective mass
is positive. According to the Chambers method [11] (see also [7, 9]), the current density can
be calculated by the following formula:

j = ed

2πh̄

∫ πh̄/d

−πh̄/d

dp0f0(p0)

∫ ∞

0
V (t) e− t

τ
dt

τ
. (31)

By substituting equations (8) and (30) we get formula (12) for j at T �= 0.
It is obvious that the more BO periods go in between two scattering events the less

probable is the phase break and the less is the electron mean drift velocity. At the same time,
the BO period decreases with increasing electric field E. Therefore, the electron mean drift
velocity and the electron current decrease with increasing the field (at �τ > 1).

Averaging equation (30) over f0(p0) gives the BO velocity for a ‘mean’ electron V (t) that
depends substantially on temperature. At T �= 0, the V (t) remains periodic (with the same
period 2π/� as at T = 0), but the features mentioned disappear, while the BO amplitude
decreases with rising temperature in complete accordance with the behavior of the current–
voltage curve maximum.

Note that the Bloch saw at T > 0.05 practically transforms to the sinusoid that corresponds
the cosine dispersion law

(
ε(p) = 1

2�(1 − cos p)
)
.

3. High-frequency differential conductivity

In this section, we will determine the induced superlattice current in the presence of an external
electric field given by

Etot(t) = E + E0 cos ωt, (32)

where ω is measured in unit of τ−1. Within the scope of quasi-classical conditions, the value
of E is arbitrary. Assuming the amplitude of variable field E0 to be much smaller than the
static field E, consider the time-dependent field in the linear approximation. The distribution
function may be found in a form

f (p,E, T , t) = fc(p,E, T ) + f1(p,E, T , ω) exp(−iωt), (33)

here f1(p,E, ω) satisfies the following equation [12]:

E
∂f1

∂p
+ (1 − iω)f1 = −E0

∂fc

∂p
(34)

7
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with periodicity condition f1(−1, E, ω) = f1(1, E, ω) and by∫ 1

−1
f1(p,E, T , ω) dp = 0. (35)

It is easy to show that the required solution is

f1(p,E, T , ω) = i

ω
· E0

E

[
fc(p,E, T ) + fc

(
p,

E

1 − iω

)]
. (36)

With the help of (36) the dynamic (high-frequency) differential conductivity can be found by
a conventional way. The result is

σ1(E, T , ω) = i

ωE

[
j (E, T ) − j

(
E

1 − iω
, T

)]
. (37)

From (37) it follows that at ω → 0 the value σ1(E, T , ω) tends to static differential
conductivity (21)

lim
ω→0

σ1(E, T , ω) = σd(E, T ). (38)

Using (12), we get

Re σ1(E, T , ω) = i

2ωE

[
j

(
E

1 + iω
, T

)
− j

(
E

1 − iω
, T

)]
. (39)

For numerical computations we present expression (39) in a form

Re σ1(E, T , ω) = 1

1 + ω2

−
√

2

πT

[sinh2(1/E) + sin2(ω/E)]−1

ωE erf(1/
√

2T )

[
cosh

1

E
sin

ω

E

∫ 1

0
exp

(
− s2

2T

)

× cosh
s

E
cos

sω

E
ds − sinh

1

E
cos

ω

E

∫ 1

0
exp

(
− s2

2T

)
sinh

s

E
sin

sω

E
ds

]
.

(40)

At T → 0 from (40) we get the expression presented in [12]:

Re σ1(E, 0, ω) = 1

1 + ω2
− cosh(1/E) sin(ω/E)

ωE[sinh2(1/E) + sin2(ω/E)]
. (41)

The opportunities of creating a terahertz oscillator on Bloch electron oscillations in SLs
are defined by conditions of existing negative high-frequency differential conductivity in those
regions of current–voltage characteristic where the static differential conductivity is positive
[5, 12]. These conditions would prevent development of undesirable domain instabilities
(Gunn effect).

Let � = eEd/h̄ be the BO frequency which in normalized measurement units is equal
to πE. Then the static differential conductivity σd is positive at � < �C and negative at
� > �C , where �C = πEC(T ) ∈ (0.914, 1.174).

The condition of THz field generation and amplification (see Introduction){
� < �C

Re σ1(�, T , ω) < 0
(42)

is very sensitive to the temperature changes as shown in figure 4. The numerical analysis
of that condition shows that both inequalities cannot be obeyed simultaneously at T > 0.01.

8
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(a) (b)

Figure 4. (a) Driving field dependence of high-frequency differential conductivity at ω = 10:
(1) T = 0, �C = 1.174; (2) T = 0.01,�C = 1.163; (3) T = 0.1,�C = 1.06. (b) Dependence
of high-frequency differential conductivity on ω at � = 1: (1) T = 0; (2) T = 0.01; (3) T = 0.1.
At such temperatures the static differential conductivity σd = σ1|ω=0 is positive.

4. Conclusion

In the present paper, an exact distribution function of the carriers has been found in the lowest
parabolic miniband of a SL placed in the dc electric field parallel to the SL axis. The novel
formula for the static current density in SL contains temperature dependence, which leads to
the current maximum shift to the low field side with increasing temperature.

We have obtained an explicit expression for the high-frequency differential conductivity
at arbitrary temperature. It was shown that high-frequency differential conductivity is very
sensitive to temperature of SL. We have compared the high-frequency electron behavior at
different temperatures and exhibited the drastic change in the character of regions where the
high-frequency differential conductivity is negative.

In summary, our analysis shows that SLs with the parabolic miniband dispersion law may
be used for the generation and amplification of terahertz fields only at very low temperatures
(T < 0.01�).

The numerical estimations of the effects predicted are reduced, in general, to measurement
units of the electric field and temperature. At d = 10−7 cm, τ = 10−12 s, � ≈ 10−2 eV, we
get that units for E and T are ≈2 × 103 V cm−1 and ≈100 K, respectively. Thus the condition
T < 0.01� is equivalent to T < 1 K.
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